An Epistemic Characterization of Zero Knowledge

Joseph Y. Halpern, Rafael Pass, and Vasumathi Raman
Computer Science Department
Cornell University
Ithaca, NY, 14853, U.S.A.
e-mail: {halpern, rafael, vramagi@cs.cornell.edu

March 16, 2009

Abstract

Halpern, Moses and Tuttle presented a definition of interactive proofs using a notion they called
practical knowledgebut left open the question of finding an epistemic formula that completely
characterizes zero knowledge; that is, a formula that holds iff a proof is zero knowledge. We present
such a formula, and show that it does characterize zero knowledge. Moreover, we show that variants
of the formula characterize variants of zero knowledge suaasurrent zero knowledd®work,

Naor, and Sahai 1998] amatoofs of knowledggFeige, Fiat, and Shamir 1987; Tompa and Woll
1987].

1 Introduction

The notions ofnteractive proofandzero knowledg#ere introduced by Goldwasser, Micali, and Rack-

off [1989], and have been the subject of extensive research ever since. Informally, an interactive proof is
a two-party conversation in which a “prover” tries to convince a polynomial-time “verifier” of the truth

of a facty (wherep typically has the forme € L, wherezx is a string andl is alanguageor set of

strings) through a sequence interactions. An interactive proof is said to be zero knowledge if, whenever
 holds, the verifier has an algorithm to generate on its own the conversations it could have had with the
prover during an interactive proof qf (according to the correct distribution of possible conversations).
Intuitively, the verifier does not learn anything from talking to the prover (other {jathat it could

not have learned on its own by generating the conversations itself. Consequently, the only knowledge
gained by the verifier during an interactive proof is thais true. The notion of “knowledge” used

in zero knowledge is based on having an algorithm to generate the transcript of possible conversations
with the prover; the zero-knowledge condition places a restriction on what the verifier is able to generate
after interacting with the prover (in terms of what he could generate before). The relationship between
this ability to generate and logic-based notions of knowledge is not immediately obvious. Having a
logic-based characterization of zero knowledge would enhance our understanding and perhaps allow
us to apply model-checking tools to test whether proofs are in fact zero knowledge. However, getting
such a characterization is not easy. Since both probability and the computational power of the prover
and verifier play crucial roles in the definition of zero knowledge, it is clear that the standard notion of
knowledge (truth in all possible worlds) will not suffice.

Halpern, Moses and Tuttle [1988] (HMT from now on) were the first to study the relationship
between knowledge and being able to generate. They presented a definition of interactive proofs using
a notion they calleghractical knowledgeThey proved that, with high probability, the verifier in a zero-
knowledge proof ofr € L practically knows a fact) at the end of the proof iff it practically knows
x € L = 1 at the beginning of the proof; they call this propekiyowledge securitylntuitively, this
captures the idea that zero knowledge proofs do not “leak” knowledge of facts other than those that
follow from = € L. They also define a notion of knowing how to generatg satisfying a relation
R(z,y), and prove that, with high probability, if the verifier in a zero-knowledge proof ef L knows
how to generate g satisfying R(z,y) at the end of the proof, then he knows how to do so at the
beginning as well; they called this propeggneration security This captures the intuition that at the
end of a zero-knowledge proof, the verifier cannot do anything that it could not do at the beginning.

HMT left open the question of finding an epistemic formula that completely characterizes zero
knowledge; that is, a formula that holds iff a proof is zero knowledge [Goldwasser, Micali, and Rackoff
1989]. In this paper we present a strengthening of knowledge security and generation security that we
call relation hiding which we show does characterize zero knowledge. Moreover, we show that variants
of relation hiding characterize variants of zero knowledge suawoasurrent zero knowledg®work,

Naor, and Sahai 1998] antoofs of knowledgf-eige, Fiat, and Shamir 1987; Tompa and Woll 1987].

2 Background

In this section, we review the relevant background both in cryptography (interactive proof systems and
zero knowledge) and epistemic logic (specifically, modeling knowledge and probability using the runs

and systems framework [Fagin, Halpern, Moses, and Vardi 1995; Halpern and Tuttle 1993]). In addition,
we introduce some of the notation that will be needed for our new results.

2.1 Interactive Proof Systems

An interactive protocols an ordered paifP, V') of probabilistic Turing machinesP andV share a
read-only input tape; each has a private one-way, read-only random tape; each has a private work tape;
and P andV share a pair of one-way communication tapes, one ffono V' being write-only for

P and read-only fo/, and the other fronl” to P being write-only forV and read-only forP. An
executiorof the protocol P, V) is defined as follows. At the beginning, the input tape is initialized with
some common input, each random tape is initialized with an infinite sequence of random bits, each
work tape may or may not be initialized with an initial string, and the communication tapes are initially
blank. The execution then proceeds in a sequence of rounds. During any givenlrofinstl performs

some internal computation making use of its work tape and other readable tapes, and then sends a
message t@ by writing on its write-only communication tap’ then performs a similar computation.
Either P or V' may halt the interaction at any time by entering a halt st&feaccepts or rejects the
interaction by entering an accepting or rejecting halt state, respectively, in which case we refer to the
resulting execution as either an accepting or rejecting execution. The running tifharaf V" during

an execution of P, V) is the number of steps taken ByandV respectively, during the execution. We
assume thaV’ is a probabilistic Turing machine running in time polynomial/in, and hence that it

can perform only probabilistic, polynomial-time computations during each round. For now we make no
assumptions about the running timefef

Denote by(P(s) < V(t))(z) the random variable that takes two random stripgs, € {0,1}*
as input and outputs an execution(df, V') in which the prover’s work tape is initialized with the
verifier's work tape is initialized with, the input tape is initialized witly, andp,, p,, are the contents of
the prover and verifier's respective random tapes. We can think®the prover’s auxiliary information,
t as the verifier’s initial information, and as the common input. Ledccepts, [(P(s) < V (t))(x)] be
the random variable that takes two infinite random string$, € {0,1}> as input, and outputs true
iff the verifier enters an accept state at the end of the execution of the pr¢fado) wherep, andp,
are the contents of the prover and verifier's respective random tapes, and false otherwise.

Informally, an interactive protocdlP, V') is an interactive proof system for a languagé, when
run on inputz (and possibly some auxiliary inputsandt), after the protocol, if the prover and verifier
are both “good"—that is, the prover usésand the verifier use¥ —the verifier is almost always
convinced thatr € L. Moreover, no matter what protocol the prover uses, the verifier will hardly ever
be convinced that € L if it is not. The “almost always” and “hardly ever” are formalized in terms of
negligible functions. A functiom : N — [0, 1] is negligibleif for every positive integek there exists an
no € N such that for alh > ng, e(n) < nik; that is,e is eventually smaller than any inverse polynomial.
Finally, let Pry, denote the uniform probability over strings (0, 1}°°)*. For ease of notation, we
typically omit the subscripk when it does not play a significant role or is clear from context, writing
just Pry;.

Definition 1 An interactive protoco(P, V') is aninteractive proof system for languadef the follow-
ing conditions are satisfied:

e CompletenessThere exists a negligible functiersuch that for sufficiently large:| and for every

2

sandt, if z € L then
Py [Acceptsy[(P(s) < V() ()] > 1 — e(|z]).

e SoundnessThere exists a negligible functiohsuch that for sufficiently larger|, for every pro-
tocol P* for the provers, andt, if x ¢ L then
Pry[Accepts,[(P*(s) <« V(t))(x)]] < d(|z]).

The completeness condition is a guarantee to both the good prover and the good verifier that if
x € L, then with overwhelming probability the good prover will be able to convince the good verifier
thatx € L. The soundness condition is a guarantee to the good verifier that if, then the probability
that an arbitrary (possibly malicious) prover is able to convince the good verifiet thdl is very low.
The probability here is taken over the runs of the protocol where the the verifier’s initial information is
s, the prover’s initial information ig, andz is the common input. The probability is generated by the
random coin flips of the prover and verifier (which in turn determine what happens in the run); we do
not assume a probability on ¢, or x.

2.2 Zero Knowledge

To make the notion of zero precise, we need a few preliminary definitions. We consider zero-knowledge
proofs of languages that have avitness relationR;,, whereR, is a set of pairgx, y) such thatr € L

iff there exists @ such tha(z,y) € Ry; let Ry (z) = {y : (z,y) € Rr}. Note that all languages in the
complexity class\V'’P have this property. Defin€iew,[(P(s) < V(t))(x)] to be the random variable

that, on inputp,, p,, describes the verifiergiewin the execution P(s) < V(t))(x)(p1, p2), that is,

the verifier’s initial auxiliary input, the sequence of messages received and read thus far by the verifier,
and the sequence of coin flips used thus far.

The intuition behind zero knowledge is that the reason the verifier learns nothing from an interaction
is that he can simulate it. The simulation is carried out by a probabilistic Turing machine. It should be
possible to carry out the simulation no matter what algorithm the verifier uses (since we hope to show
that, no matter what algorithm the verifier uses, he gains no information beyond the facgthat so
we have a simulatoby - for every algorithmi/* of the verifier. The simulatofy - actually generates
verifier views of the conversations. Wiglerfect zero knowledgéhe distribution of the views created by
Sy~ given just inputse and¢ (which is all the verifier sees) is identical to the actual distribution of the
verifier's views generated byP(s) < V (t))(x). With statistical zero knowledgéhe two distributions
are just required to be close. Finally, witbmputational zero knowledgeo PPT probabilistic polyno-
mial timé algorithm can distinguish the distributions. We capture the notion of “distinguishing” here by
using a PPT distinguishép. The distinguisher gets as input verifier views generatefljpyand by the
actual conversation, and must output either 1 or 0, depending on whether it believes the view came from
Sy~ or the actual conversation. Notice that the inputs to the simulatandi¢) are both accessible by
the verifier, so the verifier could, given his initial state and the common input, run the simulator instead
of interacting with the prover. The distinguisher tries to identify whether the verifier talked to the prover
or ran the simulator on his own. If no distinguisher is able to tell the difference, then the verifier might
as well not have interacted with the prover but run the simulator instead; we say that the interaction was
“zero-knowledge” in this case because the verifier saw nothing during the interaction that he could not
simulate.

We allow the distinguisher to have additional information in the form of auxiliary inputs (in addition
to the view it is trying to distinguish). This allows the distinguisher to have information that the verifier
never sees, such as information about the prover’s state, since such information could be helpful in
identifying views from the interaction and telling them apart from those produced by the verifier alone.
Allowing the distinguisher to get such auxiliary inputs strengthens the zero knowledge requirement in
that, no matter what additional information the distinguisher might have, he cannot tell apart views of
the interaction from simulated ones.

Definition 2 An interactive proof systerf, V') for L is said to becomputational zero knowledgg

for every PPT verifier protocdl’*, there is a probabilistic Turing maching - that takes as input the
common inputc and verifier's auxiliary informatiort, runs in expected time polynomial ja|, and
outputs a view for the verifier such that for every PPT (probabilistic polynomial time) Turing machine
D that takes as input a view of the verifier and an auxiliary input {0, 1}*, there exists a negligible
functione such that for alle € L, s € Ry (z),t € {0,1}*, 2z € {0,1}%,

|Pry[D(Sy+(z,t),z) = 1]—
CPep[D(View((P(s) < V*(H)(@)] 2) = 1)] < e(fz]).

2.3 The Runs and Systems Framework

Our analysis of interactive proof systems is carried outims and systenfsamework [Fagin, Halpern,
Moses, and Vardi 1995]. The systems we consider consist of a (possibly infinite) set of communicating
agents. Agents share a global clock that starts at @irmad proceeds in discrete increments of one.
Computation in the system proceeds in rounds, raundsting from timem — 1 to timem. During a
round, each agent first performs some (possibly probabilistic) local computation, then sends messages
to other agents, and then receives all messages sent to him during that round. Each agents starts in
some initiallocal state its local state then changes over time. The agdatal stateat timem > 0
consists of the time on the global clock, the agent’s initial information (if any), the history of messages
the agent has received from other agents and read, and the history of coin flips ugtbalAstate
is a tuple of local states, one for each agent and one for the nature, which keeps track of information
about the system not known to any of the agents. We think of each agent as following a protocol that
specifies what the agent should do in every local state. An infinite execution of such a protocol (an
infinite sequence of global states) is calledia. We define aystemnto be a set of such runs, often the
set of all possible runs of a particular protocol. Given a ruend a timem, we refer to(r, m) as a
point, and we say that-, m) is a point of the syster if » € R. We denote the global state at the point
(r,m) (that is, the global state at time in) by (m), and the local state of agemin r(m) by r,(m).
Let KCo(r,m) = {(r',m') : ro(m) = 7,(m')}; Ko(r, m) can be thought of as the set of points that
considers possible &t, m), because he has the same local state at all of them. Since the agent’s local
state at timen consists of the time on the global clock, any point thabnsiders possible &t, m) is
also at timem, so/kC,(r,m) = {(r',m) : ro(m) = rl,(m)}.

In interactive proof systems, we assume that there are two agents—a paneta verifien. Both
agents have a common input (typically a string {0, 1}*); we denote by-.(0) the common input in
runr. We also assume that the prover and verifier agents have initial localstéigs= s € {0,1}* and
r,(0) =t € {0,1}*, respectively, both of which contain(0). Additionally, we assume that nature’s
state at all timesn includes a tuplépy, o, p", P*, V™), wherep;, andp;, are the prover’s and verifier's

4

random tapes, respectively, in rapp” is an additional tape whose role is explained in Section 3 f&ind
andV* are the protocols of the prover and verifier. An interactive proto£bl’) generates a system.

The runs of the system correspond to possible executioi®,df). Following HMT, we denote by

P x V the system consisting of all possible executions§@fl”) and byP x VPP the system consisting

of the union of the systemB x V* for all probabilistic, polynomial-time (PPT) protocdi&t. PrP x

is defined analogously. More generally, weet< V denote the system consisting of the union of the
systemsP x V for all prover protocols? € P and verifier protocol$” € V. Since we need to reason
about probability, we augment a system to ggtr@babilistic systemby adding a functiornPR,, for

each agent that associates with each point:) a probabilityP R, (r, m) on points for agent, whose
support is contained iiC,(r,m). In many cases of interest, we can think@R,(r, m) as arising

from conditioning an initial probability on runs on the agent’s current local state, to give a probability
on points. There are subtleties to doing this though. We often do not have a probability on the set of
all executions of a protocol. For example, as we observed in the case of interactive proofs, we do not
want to assume a probability on the auxiliary inpsiendt or the common input. The only source of
probability is the random coin flips.

Halpern and Tuttle [1993] suggested a formalization of this intuition. Suppose that we partition
the runs ofR into cells, with a probability on each cell. For example, in the case of interactive proof
systems, we could partition the runs into sRts; ., according to the inputs and¢. The random coin
flips of the prover and verifier protocols then give us a well-defined probability on the ruRs 4n
We can then defin®@R,(r,m) by conditioning in the following sense: Given a setf points, let
R(S) = {r : (r,m) € S forsomem}. Let R(r) be the cell of the partition oR that includes-, and
let Pr(,y be the probability on the cell. Il is an arbitrary set of points, defiféR,(r,m)(A) =
Prroy(R(AN Ky(r,m)) | R(Ka(r,m)) NR(r)). (We assume for simplicity that all the relevant sets
are measurable and thtr . (R (K. (r,m)) N R(r)) # 0.) Note that for synchronous systems (such
as those we deal with), sindg,(r, m) is a set of timen points, the support 6PR,(r, m) is a subset
of time m points (i.e.,PR4(r,m)(A) = 0 unlessA includes some timen points, since otherwise
AN Ky(r,m) = 0). Intuitively, we associate a set of points with the set of runs going through it,
and then define the probabili§R,(r, m), which isa’s distribution on points at the poirgt, m), by
conditioning the probability on runs defined o8 cell on the runs going through the €t (r, m) (i.e.
the runsa considers possible given his information at pdintn)). A probabilistic system istandard
if it is generated from probabilities on runs in this way.

In systems where the runs are generated by randomized algorithms, the cells are typically taken so
as to factor out all the “nonprobabilistic” or “nondeterministic” choices. In particular, we do this for the
systemP x V, so that we partition the runs into cef; ;, according to the inputsandt, as suggested
above, and take the probability on the runs in the cell to be determined solely by the random inputs of the
prover and verifiep, andp, and the random string contained in nature’s state. Thus, we can identify
the probability orfR ; with the uniform distributionPry,. The probabilities on the systef x V are
defined by the probabilities on each individual systBnx V for P € P andV € V; that is, we now
partition the runs of the system into cells according to the prover and verifier protBcBland the
inputss andt, so there now is a separate cell for each combinatian, df, s, andt, and the probability
Prp.y () can be identified with the uniform distributidtr, .

!Note that we distinguislp andv, the “prover” and the “verifier” agents respectively, from the protocols that they are
running. In the systen® x V, the verifier is always running the same prototoin all runs. In the syster’® x VPP, the
verifier may be running different protocols in different runs.

2.4 Reasoning About Systems

To reason about systems, we assume that we have a collection of primitive facts such as “the value of
the variablex is a prime number” (where is the common input in the run), ox“€ L”, where L

is some set of strings. Each primitive faetis identified with a setr(y) of points, interpreted as the

set of points at whichp holds. A point(r,m) in a systenmR satisfiesp, denotedR,r,m) = ¢, if

(r,m) € w(¢). We extend this collection of primitive facts to a logical language by closing under the
usual boolean connectives, the linear temporal logic opefataperatorsat time m* for each time

m*, the epistemic operator&,, one for each agent, and probability operators of the form for)

each agent and real numbek. The definitions of all these operators is standard:

e (R,r,m) | OQpiff (R,r,m’) = ¢ for somem’ > m.

o (R,r,m) = Kypiff (R,r',m') = ¢ forall (+',m’) € Kq(r,m). (Intuitively, agenta knowsy
if ¢ is true at all the worlds that agesiconsiders possible.)

o (R,r,m) |= at time m* ¢ iff (R,r,m*) = .
o (R,r,m) |= pro(e) iff PRa(r,m)([¢]) > A, where[e] = {(+',m) : (R,r',m) = ¢}.

We write R = ¢ if (R,r,m) = ¢ for all points(r,m) in R.

3 Characterizing Zero Knowledge Using Relation Hiding

We identify “knowing something about the initial state of the system” with “being able to generate a
witness for some relation on the initial state”.

For example, if the languagefrom which the common input is taken is the set of all Hamiltonian
graphs, then we can define a relati®msuch thatR(s, ¢, z, y) holds iff y is a Hamiltonian cycle in graph
x. (Here the relation is independentoéndt.) Recall that a Hamiltonian cycle in a graph is a path that
goes through every vertex exactly once, and starts and ends at the same vertex; a Hamiltonian graph is a
graph with a Hamiltonian cycle. We can think of a Hamiltonian cyches a withess to a graphbeing
Hamiltonian. We allow the relatio® to depend ors andt in addition toxz because this allows us to
describe the possibility of the verifier learning (via the interaction) facts about the prover’s initial state
(which he does not have access to). This allows us to account for provers with auxiliary information on
their work tapes. For exampl&(s, ¢, z, y) could be defined to hold iff the prover has Hamiltonian path
y on its work tape (in its initial state).

We are therefore interested in relatioRson S x T' x L x {0,1}*, whereS is the set of prover
initial states and’ is the set of verifier initial states. We want a formal way to capture verifier’s ability to
generate such witnesses f@r We do this by using an algoritht that takes as input the verifier's local
state and the common inputand is supposed to returryauch thatR(s, ¢, z, y) holds. The algorithm
M essentially “decodes” the local state into a potential withessRforMore generally, we want to
allow the decoding procedur® to depend on the protoc® ™ of the verifier. We do this by using a
functionM : 7 M — 7 M; intuitively M(V*) is the decoding procedure for the verifier protogdl.

To reason about this in the language, we add a primitive propositigr; to the language, and define
(R,r,m) = My, g if R(rp(0),7,(0),7.(0), M(V*)(1:(0),r,(m))(p")) holds, wherd/* is the verifier

protocol in runr andp” is the extra random tape that is part of nature’s local state im;rtins makes

the output ofM(V*) in run r deterministic (althoughl/ is a probabilistic TM). For any constant

let GO R, read “the verifier can generateyaatisfying R usingM with probability A at timem*”

be an abbreviation ofr;)(at time m* M, z). We can generalize this to a formutd™™"* R which
considers functiong whose meaning may depend on components of the state, such as the verifier's
protocol and the length of the common input; we leave the straightforward semantic details to the reader.
GYE™ R, read “the prover can generate aatisfying R usingM with probability A at timem*”, is

defined analogously. Finally, we add the primitive propositoda R;(x) to the language, and define
(R,r,m) |='s € R(x) if r.(0) € L andr,(0) € Rr(rc(0)).

We now show how to use the formui>™ R to capture the intuitions underlying zero-knowledge
proofs. Intuitively, we want to say that if the verifier can generatesatisfying a relatior? after the
interaction, he could also do so before the interaction (i.e., without interacting with the prover at all).
However, this is not quite true; a verifier can learn satisfyingR during the course of an interaction,
but only in a negligibly small fraction of the possible conversations. We want to capture the fact that
the probability of the verifier being able to generate the witness correctly at a final point in the system is
only negligibly different from the probability he can do so at the corresponding initial point (in a perfect
zero knowledge system, the probabilities are exactly the same). Note that when the Turing machine
used by the verifier in a particular rungenerates g, the verifier may not know whetherin fact is
a witness; that is, the verifier may not know whetfi®r, ¢, z, y) in fact holds. Nevertheless, we want
it to be the case that if the verifier can use some algoriMirthat generates a witnegswith a certain
probability after interacting with the prover, then the verifier can generate a witnedth the same
probability without the interaction. This lets us account for leaks in knowledge from the interaction that
the verifier may not be aware of. For example, a computationally bounded verifier may have a Hamilto-
nian cycley in graphz as part of his local state, but no way of knowing thas in fact a Hamiltonian
cycle. We want to say that the verifier knows how to generate a Hamiltonian cycle if this is the case
(even if he does not know that he can do so), since there is a way for the verifier to extract a Hamiltonian
cycle from his local state.

We now define relation hiding, which says that if the verifier initially knows that he can, at some
future time during the interaction with the prover, generate a witness for some refatarthe initial
state with some probability, then he knows that he can generate a witnegsdbtime 0, that is,
before the interaction, with almost the same probability. We allow the generating machines used by
the verifier (both after and before the interaction) to rumxpectedolynomial time in the common
input and verifier view. Allowing them to only run in (strict) polynomial time, would certainly also
be a reasonable choice, but this would result in a notion that is stronger than the traditional notion of
zero-knowledgé. Let EPPT be the set of all expected probabilistic polynomial time algorithms (i.e.,
algorithms for which there exists a polynomjakuch that the expected running time on inpus at
mostp(|z|)).

Definition 3 The systenR is relation hiding forL if, for every polynomial-time relatiol® on S x
T x L x {0,1}* and functionM : TM — EPPT, there exist functiondl’ : TM — EPPT,
e : TM x N — [0, 1] such that for every Turing machiiié*, ¢(V*,) is a negligible function, and for
every0 < X\ <1 and timem*,

R = at time 0 (s € Rp(x) A Gll}/l’m*’)‘R N G11>/[/70,>\—6R).

2In fact, it would result in a notion callestrict polynomial-time zero knowled@@oldreich 2001].

In Definition 3, we allow the meaning @fto depend on the verifier's protocbl* since, intuitively,
different verifier protocols may result in different amounts of knowledge being leaked. If we had not
allowede to depend on the verifier protocil*, we would need a single negligible function that bounded
the “leakage” of information for all verifiers iwP?. We cannot prove that such a function exists with
the traditional definition of zero knowledge. Similarly, we must allb#/ to depend on the verifier's
protocol, even ifM does not. IntuitivelyM’ must be able to do at time 0 whM can do at time
m*, so it must know something about what happened between times @ anthhe verifier's protocol
serves to provide this information, since for each verifier protdcglthe definition of zero knowledge
ensures the existence of a simulagr that can be used to mimic the interaction before tinie The
relation-hiding property captures the requirement that if the verifier can eventually generate an arbitrary
R, he can do so almost as well (i.e. with negligibly lower probability of correctness) initially. We now
use this property to characterize zero knowledge.

Theorem 1 The interactive proof systef, V') for L is computational zero knowledge iff the system
P x VPP is relation hiding forL.

Theorem 1 says that {fP, V') is a computational zero-knowledge proof system, then for any PPT
verifier and relatiorR, if the verifier can eventually generate a withessRphe can do so almost as well
initially. Note that in this characterization of zero knowledge, the prover does not need to know the veri-
fier's protocol to know that the statement holds. An intuition for the proof of Theorem 1 follows: the de-
tails (as well as all other proofs) can be found at www.cs.cornell.edu/home/halpern/papers/tark09a.pdf.

For the “if” direction, suppose thgtP, V') is a computational zero knowledge system.Vif is
the verifier protocol in run- € P x VPP, then there is a simulator machisg - that produces verifier
views that no distinguisheb can distinguish from views during possible interactions with the prover,
no matter what auxiliary inpub has. We show that if the verifier has an algorithd(1*) that takes
as input his view at a final point of the interaction and generatgsatisfying the relatior?, then he
can generate suchygbefore the interaction by running the simulating machipe at the initial point
to get a final view, and then runnidd (V*) on this view to generatg. We can therefore construct the
functionM’ usingM and.Sy «.

For the “only if” direction, given an arbitrary protoc®™*, we construct a relatio® such that
the verifier has an algorithm for generating witnessesHaafter the interaction. Sinc& x VPP is
relation hiding forL, the verifier has an algorithm for generating withessesHat initial points of
the interaction. We then use this generating machine to implement a simSlatathat fools any
distinguisher.

4 Characterizing Variants of Zero Knowledge

We can use the ideas of relation hiding to characterize variants of zero knowledge. In this section,
we show how to characterize two well-known variants: concurrent common knowledge and proofs of
knowledge.

4.1 Concurrent Zero Knowledge

So far, we have considered only single executions of an interactive proof system. However, zero-
knowledge proofs are often used in the midst of other protocols. Moreover, when this is done, several

8

zero-knowledge proofs may be going on concurrently. An adversary may be able to pass messages
between various invocations of zero-knowledge proofs to gain information. Dwork, Naor, and Sahai
[1998] presented a definition cbncurrentzero knowledge that tries to capture the intuition that no in-
formation is leaked even in the presence of several concurrent invocations of a zero-knowledge protocol.
They consider a probabilistic polynomial-time verifier that can talk to many independent provers (all us-
ing the same protocol) concurrently. The verifier can interleave messages to and from different provers
as desired. We say that artended verifier protocas a protocol for the verifier where the verifier can
interact with arbitrarily many provers concurrently, rather than just one prover. (Since we are interested
in verifiers that run in polynomial time, for each extended verifier protdttere is a polynomiagy

such that the verifier can interact with onjy (|x|) provers on input:. This means that the verifier’s

view also contains messages to and from at mpstz|) provers.) Denote byP(s) < V (t))(z) the
random variable that takes an infinite tuple of infinite random strifgs):cn, p») @s input and outputs

an execution where all the provers are running protdeoelith auxiliary inputs on common inputz

and the verifier is running the extended verifier protd¢akith auxiliary inputt and common input,

proveri has the infinite string; on its random tape, and the verifier hason its random tape.

With this background, we can define a concurrent definition of zero knowledge in exactly the same
way as zero knowledge (Definition 2), except that we now consider extended verifier protocols; we omit
the details here.

We can model a concurrent zero-knowledge system in the runs and systems framework as follows.
We now consider systems with an infinite number of agents: a vetifeand an infinite number of
proverspi, pa, All agents have common input(0) in runr. As before, the provers and the verifier
have initial local states. We will be interested in systems where all the provers have the same initial
state and use the same protocol. Moreover, this will be a protocol where a prover talks only to the
verifier, so the provers do not talk to each other. This captures the fact that the verifier can now talk to
multiple provers running the same protocol, but the provers themselves cannot interact with each other
(they are independent). Again, the initial local states of the provers and the verifier all caritgin
Additionally, we assume that nature’s state at all timesncludes a tupl€py, , ..., oy, p", P*, V™),
wherepy, is proverp;’s random tape angy, is the verifier's random tape in run p" is an additional
tape as beforeP* is the protocol used by all the provers, a¥id is the verifier's protocol. Note that
the provers’ random tapes are all independent to ensure that their actions are not correlated. Given a set
P of prover protocols andb of verifier protocols, lef® x V denote the system with runs of this form,
where the provers’ protocol is iR and the verifier's protocol iv. If P = {P}, we write P x V. We
define the probability of® x V' as before, partitioning the runs into cells according to the protocol used
and the inputs. Thus, we can identify the probability/®y; - with the uniform distributiorPr;__ .

Theorem 2 The interactive proof syste(®, V) for L is computational concurrent zero knowledge iff
the systenP x VPP is relation hiding forL.

The proof is almost identical to that of Theorem 1.

4.2 Proofs of Knowledge

Loosely speaking, an interactive proof is a proof of knowledge if the prover not only convinces the
verifier of the validity of some statement, but also that it possesses, or can “feasibly compute”, a witness
for the statement proved (intuitively, using the secret information in its initial state). For instance, rather

9

than merely convincing the verifier that a graph is Hamiltonian, the prover convinces the verifier that
he knows a Hamiltonian cycle in the graph. We show how this notion can be formalized using our
logic. There are a number of ways of formalizing proofs of knowledge; see, for example, [Bellare and
Goldreich 1992; Feige, Fiat, and Shamir 1987; Feige and Shamir 1990; Tompa and Woll 1987]. We
give here a definition that is essentially that of Feige and Shamir [1990]. In the full paper, we discuss
modifications that give the other variants, and how to modify our characterization to handle them.

Definition 4 An interactive proof syste(, V') for a languagel with witness relatiorfz;, is aproof of
knowledgeif, for every PPT prover protocaP*, there exists a negligible functiarand a probabilistic
Turing machine? p- that takes as input the common inpwand prover’s auxiliary informatios, runs in
expected time polynomial jm|, and outputs a candidate witness fgrsuch that for alke, s, ¢ € {0,1}*,

Pry[{ Accepts,[(P(s) < V(1)) (2)]}] -
Pry[{Ep(z,5)) € Rp(2)}] < €(|z]).

Intuitively, this says that for every provét*, if P* succeeds in convincing the verifigrthatz is in L,

then there is a "knowledge extractor” machifie- that can extract a witness farfrom the prover’s
auxiliary information. We can think of the extractor as demonstrating that the prover really does know
a witness to show that € L, given its auxiliary informatiors. We now formalize this definition of
proofs of knowledge using our logic. Letcepts denote the primitive proposition that holds iff the
verifier enters an accept state at the end of the interaction.

Definition 5 The systernR is witness convincing for the languadewith witness relation?;, if there
exist functiondM : TM — EPPT,e: TM x N — |0, 1] such that, for every Turing machirfe,
e(P*,-) is a negligible function, and, for all < \ < 1,

R = at time 0 prf,‘((}accepts) = Gg/[’o’)‘_eRz,
where(s, t,z,y) € R} iff y € R ().

This definition says that there exists a functddnsuch thaiM(P*) can generateg@such thats, ¢, z, y) €
Rj wheneverP* makes the verifier accept in the syst&nThis machine can be viewed as a knowledge
extractor forP*, motivating the following theorem.

Theorem 3 The interactive proof syste(®, V) for L is a proof of knowledge iff the systégmiP x V' is
witness convincing foL.

To see why this should be true, note thathf 1) is a proof of knowledge and if the verifier accepts on

inputz when interacting withP*, then there exists a knowledge extractor macliipe that can gener-

ate awitnesg € Ry (x), and can therefore generatg auch tha{s, ¢, z, y) € Rz. For the converse, as

we said above, the machibd(P*) that exists by the definition of witness convincing can be viewed as a
knowledge extractor faP*. Again, the details can be found at www.cs.cornell.edu/home/halpern/papers/tark09a

The major difference between the FFS and TW difference is that, in the FFS definition, rather than
allowing a different machindsp- for every prover protocoP*, FFS require that there be a single
knowledge extractor maching that has oracle access to the prover’s protocol and a fixed bivariate

10

polynomialp such that the running time @ given a proverP* with runtime bounded by a polynomial

g and inputz is p(q(|x|, |x|). To capture this difference. we vary the definition of witness convincing to
require thatM (P*) for any P* return the same machiné that takes (a description ofy* as an input
and has expected runtime polynomial in the runtimébfand|z|.

5 Conclusions and Future Work

HMT formalized the notion oknowledge securitgnd showed that a zero-knowledge proof system for

x € L satisfies it: the prover is guaranteed that, with high probability, if the verifier will practically
know (as defined in [Moses 1988]) a factat the end of the proof, he practically knowss L = ¢ at

the start. They also formalized the notion of knowing how to generatsaisfying any relatiol(z, y)

that is BPP-testable by the verifier, and showed that zero-knowledge proofs also satisfy the analogous
property of generation security (with respect to these relations). Their work left open the question of
whether either of these notions of security characterizes zero knowledge.

We have provided a different definition of what it means for a polynomial-time agent to know how to
generate a string satisfying a relatiorR. Using this definition we provide a logical statement—called
relation hiding—that fully characterizes when an interaction is zero knowledge. We additionally show
that variants of this statement (using the same notion of knowing how to generate) characterize variants
of zero knowledge, including concurrent zero knowledge and proofs of knowledge.

Our notion of relation hiding considers the verifier’'s knowledge at the beginning of a run (i.e. attime
0); it says that, at time 0, the verifier cannot know that he will be able to generate a witness for a relation
with higher probability in the future than he currently can. We would like to make the stronger claim
that the verifier willneverknow that he can generate a witness satifying the relation better than he knows
he can at the beginning (or, more accurately, will almost certainly never know this, since there is always
a negligible probability that he will learn something). To do this, we need to talk about the verifier's
knowledge and belief at all points in the system. Consider, for example, a verifier trying to factor a
large number. We would like to allow for the fact that the verifier will, with some small probability,
get the correct answer just by guessing. However, we want to be able to say that if, after interacting
with the prover, the verifier believes that he can guess the factors with non-negligible probability then,
except with very small probability, he already believed that he could guess the factors with almost the
same probability before the interaction. Making this precise seems to require some axioms about how
a computationally-bounded verifier's beliefs evolve. We are currently working on this, using Rantala’s
“impossible possible-worlds approach” [Rantala 1982] to capture the verifiers computational bounds.
For example, if the verifier cannot compute whether a numbigrprime, he will consider possible a
world wheren is prime and one where it is not (although one of these worlds is logically impossible).
Proving analogues of our theorem in this setting seems like an interesting challenge, which will lead to
a deeper understanding of variants of zero knowledge.

A Proofs

A.1 Computational Zero Knowledge

Theorem 1: The interactive proof syste(®,) for L is computational zero knowledge iff the system
P x VPP is relation hiding forL.

11

Proof. For the “if” direction, suppose thdtP, V') is a computational zero knowledge system and that
(P x VPP 1, 0) = Gy"™ R for a polynomial-time relatior® and functionsM : TM — EPPT
and) : TM x N — [0,1]. We want to show that there exist function§’ : 7M — EPPT and

€ : TM x N — [0,1] such that(P x VPP r 0) = M 02=¢R_ The intuition behind the proof is as
follows. If (P, V) is zero knowledge, ant™ is the verifier protocol in rum, then there is a simulator
machineSy - that produces verifier views that no distinguistiercan distinguish from views during
possible interactions with the prover, no matter what auxiliary idptias. We show that if the verifier
has an algorithnMI(1V7*) that takes as input his view at a final point of the interaction and generates a
satisfying the relatiorR, then he can generate such before the interaction by running the simulating
machineSy - at the initial point to get a final view, and then runnikg(V*) on this view to generatg.

We can therefore construct the functib’ usingM and Sy «.

In more detail, we want to ShofP x VPP) |= at time 0 (s € Ry (x) AGYY™ R = G%/I/’O’A*R).
Thus, we must show that for all runs we have(P x VP, r.0) = (s € R (x) A Got™ R =
GIUVI/’O’A_&R). So suppose that(0) € L, 7,(0) € Rr(r.(0)), and({ P} x VPP, r,0) = GYV™ AR, By
definition, this means th&P x VPP, r,0) = pr)(at time m* M, r). Assume without loss of generality
thatm™* is greater than the final time of the interaction in all runs with inpu{There is such am*,
sinceV* runs in time polynomial irjz|. This assumption is made without loss of generality since we
are assuming perfect recall, so anything the verifier can do in the middle of the interaction, he can do
at the end). Construct a PPT distinguistigias follows. D takes as input a verifier viewiew, and
extracts the verifier's initial statefrom it (since by perfect recall, the initial verifier state is contained in
any subsequent view). Recall that distinguishers can take auxiliary inputs as well as a view. In this case,
in runr we choose to givé) as auxiliary input the common inputand the prover’s statein ». Given
x ands and a random string, D runsM(V*) onz, view,,, andp, whereV'* is the verifier's protocol in
runr, to gety, and outputsi(s, t, z,y). SoD with inputsz, s, andp accepts the verifier's viewiew,
iff R(s,t,z, M(V*)(view,)(p)) = 1 for thet contained in the verifier's view.

Suppose that the verifier rud& in . Since(P x VPP, r,0) = pr)(at time m* M, r), we have
PRy(r,0)({(+',0) : (PxV*,7",0) |= at time m* M, r},7,(0) = TU(O),T;(O) =1,(0)}) > AMV™, |re(0)]).
Recall that we can identifPR,(r, 0) with Pry;,, so

(Pry({r' € (PxV)(r) : (PxV*,7",0) |= at time m* M, g, r},(0) = 7,(0),7,(0) = rp(0)}) > A(V*, |r.(0)]).

P

By definition of M, g,

Pry[{r' € (P x V)(r) : R(r;(0),7,(0), 74(0), M(V*)(re(0), 7, (m"))) = 1} = A(V™, [re(0)]).

By definition of (P x V)(r),
Pry [R(rp(0), 75(0), 7¢(0), M(VF) (re(0), 7o (m*))) = 1] = AV, [r(0)])

Thus, D with auxiliary inputsr.(0) andr,(0) accepts the verifier's view(m*) with probability at least
A(V*, |rc(0)]) (where the probability is taken over the random choiceBpf

Becaus€ P, V) is a computational zero-knowledge proof systemipif r.(0) € L andr,(0) €
R(rc.(0)), then there is an expected PPT Turing machige and a negligible functiom(V*) such
that Sy~ on inputr.(0),r,(0) outputs a verifier view such that every distinguisher, and in particular

12

the distinguishelD constructed above, accepts this view with probability at 1é&st ¢)(V*, |r.(0)])
(taken over the random choices Bfand Sy «), no matter what auxiliary information we give it, and in
particular given auxiliary inputs.(0) andr,(0). Thus, by the definition oD, we must have

Pry[R(rp(0),75(0), 7¢(0), M(V7) (re(0), 7o (m™))) = 1] = AV, [re(0)))-

DefineM’ : TM — EPPT by takingM/(V*)(z,t) = M(V*)(x, Sy« (z,t)). Note that this definition
suppresses the random choiceMf(V*), Sy~ andM(V*)—we assume that each of these machines
is given a random tape, and that the random tapeS,efand M (V*) are independent, so that their
outputs are not correlated. SinSg- andM (V*) are both expected polynomial-time |in| and|¢|, SO

is M/(V*). Note also that

R(rp(0),74(0),7c(0), M/(V*) (re(0), 7(0)) (p")) = 1

R(rp(0),75(0),7c(0), M(V7) (re(0), Sv= (r(0), 75(0)) () (p")) = 15
thus,
Pry[R(rp(0),74(0), 7¢(0), M'(V*)(r(0), 74(0))) = 1] = (A — €)(V", [rc(0)]).-
SoM'(V*) runs in expected polynomial time and outputs a value such that
(P x VPP 1,0) = pry~¢(at time 0 M, R).

This completes the proof of the “if” direction.

For the “only if” direction, we want to show that for every verifier proto&di, there is an EPPT
algorithm Sy« such that for any PPT distinguish®&rwith any auxiliary input, there exists a negligible
functione such thavvz € L,Vs € Rr(x),t,z € {0,1}*,

[Pro[{D(Sv+(x,1), 2) = 1}] = Pry[{D(View,[(P(s) < V*(1))(2)], 2) = 1}]| < e([z).

The idea behind the proof is as follows. Given an arbitrary prot®colwe construct a relatioR such
that the verifier has an algorithm for generating witnesseszfafter the interaction. Sincg x VPP

is relation hiding forL, the verifier has an algorithm for generating witnessesHat initial points
of the interaction. We then use this generating machine to implement a siméiatdhat fools any
distinguisher.

Recall that the set of possible verifier initial states is the set of all bitst{iagis;*. For an arbitrary
PPT distinguisheb, define the sef, C {0, 1}* of verifier states of the form= #'; 17°%(=); D: 2: pp,
wheret’ € {0,1}*, = € L, D is the description of the PPT distinguisherec {0,1}*, pp € {0,1}%,
andpoly(-) is some polynomial. Define a relatidR by taking R(s, ¢, x,y) = 1 iff ¢ is of the form
t = t/;17°w(2D. D 2: pp and the distinguisheb contained int accepts on inpuy when given the
random stringp and auxiliary input: contained in. (otherwiseR(s, t, x,y) = 0).

Define M(V*) to be the trivial machine that on input.(0),r,(m)) outputs the verifier's view

r»(m). Suppose that there exists a functidrand a setd of runs such that for alt € A, if m} is

the final round in rurr, then (P x VP, r,0) = GY"™ " R. SinceP x VPP is relation hiding for

13

L, there exists a functiodM’ : 7M — EPPT and a functione : 7M x N such thate(V*) is
negligible and for alr € A, (P x VPP,7,0) = s € Ry (x) = GY'*“R. Define Sy by taking
Sy=(,t)(p) = M'(V*)(,1)(p)-

Suppose, by way of contradiction, that for some distinguidhéhere is a polynomiagb such that
for infinitely many

x € L,s € R(x),andt € {0,1}*, there is & € {0, 1}* such that there exist functiong and\3
(that may depend og) such thaPry [{ D(Sy+(x,t), 2) = 1}] = Ni(«, 5 1), Pry[{ D(View, [(P(s) <
V*(t)(x)], z) = 1} = N5(z, s,t), and|Ni (z, s,t) — N(x, s,t)| > ‘ - Consider the séfp 5,. C
Tp of verifier states of the form = #/;190#1); D; 2: ppp, whereq is a polynomial such thag(|z|)
is an upper bound on the running time of the verifier protd¢éland the simulatoSy~ on input
x. The effect of this choice is that, given the verifier's state, the verifier and simulator cannot access
the distinguisher description. Therefor€jew,[(P(s) < V*(t))(x)(pp, pv)] = View,[(P(s) <
V() (x)(pps po)] @nd Sy« (z,t)(py) = Sy=(x,t')(py). If there exists: € {0, 1}* such that the dis-
tinguisherD, given auxiliary inputz, succeeds in distinguishing the distributiofigiew,[(P(s) «
V*(#"))(z)} and{ Sy« (z, ')}, thenD can distinguisK View,[(P(s) < V*(t))(x)} and{Sy~«(z,t)}
givenz. By construction offp g, .., for infinitely manyz € L, s € Ry (z) andt € Tp,s, ., there exist
functions A7 and A3 such thatPry[{D(Sv-(x,t),z) = 1}] = Ni(x,s t) Pry[{D(View,[(P(s) <
V) ()], 2) = 1} = M(x,s,t), and|A\j(z, s,t) — A5(x,s,t)| > Ix\ (the z referenced here is
contained inf). Without loss of generality, we can assume thétr, s, t) — A\j(x, s, t) > for
infinitely many of the relevant’s, sS andt's. To see that this is without loss of generailty, note
that if \5(x,s,t) — A\(x,s,t) > p(m) for only a finite number of:’s, s's, andt’s, then it must
be the case thaXf(z,s,t) — A\j(z,s,t) > m for infinitely many z’s, s's, andt’s. In this case,
we can define a distinguishé?’ that outputs the opposite of what outputs when given the same
view and auxiliary input. Then for infinitely many € L, s, andt, there exists: € {0,1}* such
that Pry [{D'(Sy+(x,t),2) = 1}] = Nf(z, s,t), Pry[{ D' (View,[(P(s) < V*(t))(z)],z) = 1}] =
N (2, 8,t), andXN§ (z, s, t) — NF (2, s,t) > (‘1m|) whereA? =1 — A\ and\ = 1 — A\3. We can then
proceed with the rest of the proof using the distinguishéinstead ofD.

Let A denote the set of tuples:, s,t) (withz € L,s € Rp(x),t € Tp,g,.) for which there exists
z € {0,1}* and functions\7, A3 such that

Pry[{D(Sv+(z,1),2) = 1}] = A(x,s,1), Pry[{D(View,[(P(s) < V*(t))(x)],2) = 1}] =
A(x,s,t), andA3(z, s,t) — Ai(x,s,t) > m In the systemP x VPP let A’ = {r € P x V* :
(rc(0),mp(0),74(0)) € A}. Soforallr € A, Pry[{D(Sv+(r(0),74(0)), 2) = 1}] = A{(r¢(0), 7(0), 7 (0))
(wherez is contained i, (0)), Pry [{ D(View, [(P(rp(0)) < V*(1,(0)))(r:(0))], 2) = 1}] = A5(r(0),r,(0), r,(0)),
andA3(rc(0),7p(0),74(0)) — Af(re(0),7(0), r(0)) > p(m(IE

So for allr € A’, if m} is the final round in rum, then by definition of?, M, andM’,
Pry[R(rp(0),74(0),7¢(0), M(VF) (rc(0), o (m7)))] = A3(rc(0), 7p(0), 74(0)),

Pry[R(rp(0), 75(0), 7¢(0), M'(V*)(re(0), 7(0)))] = A{ (re(0), 7(0), 74(0)),

and
1

X5(re(0).7(0), 7 (0)) = X§ (re(0), 7(0). 70 (0)) > =

14

So for any negligible functioa(V*),

Pry[R(rp(0), 75(0), 7¢(0), M (V") (re(0), 70(0)))] < A5(re(0), 7(0), 74(0)) — (V) (J[)

A

for all but finitely manyz. By definition of pr, for all r € A’,

(P x VPP r 0) = prig (at time m})M, r

and
(P x VPP r 0) | pm),\zfe(at time 0)M', g

for any negligible functior(V*). Also, by definition ofA’, (P x VPP r,0) = s € Ry.(x), SO

(P x VPP 7,0) = s € Ry(x) A Gy "R
and o
(P x VPP, r,0) i Gy 2R

for any functione : 7 M x N — [0, 1] such that(V*) is negligible. This gives us a contradictian.

A.2 Concurrent Zero Knowledge

Theorem 2: The interactive proof syste(#®, V') for L is computational concurrent zero knowledge iff
the systenP x VPP is relation hiding forL.

Proof. For the “if” direction, suppose th&f”, V') is a computational concurrent zero knowledge system
and tha{ P x VPP, 1, 0) = GYY™ R for some arbitrary polynomial-time relatighand some functions
M:TM — EPPT,\: TM x N — [0,1]. We want to show that there exist functiowf : 7 M —
EPPT,e: TM x N — [0,1] such that P x VPP, r,0) = GY'O*°R,

Let VV* be the extended verifier protocol in rune P x VPP, let z be the common input, and
let gy« (|x|) be an upper bound on the runtime 6f on common inpute. Recall that the verifier's
local state at timen > 0 consists of the time on the global clock, his initial informatigri0) (which
contains the common input(0)), the history of messages he has received from other agents and read,
and the history of coin flips he has used. Since the verifier’s running time is boundgéd @y.(0)|),
no matter how many messages he receives in rounte can read at mogt «(|r.(0)|) of them. So
his local state (and his view) at any time > 0 can contain at mosty«(|7.(0)|) messages, coming
from at mostgy«(|r.(0)|) provers (indexed without loss of generality by2, . .., gy« (|r(0)])). So for
every runr in P x VPP, the verifier interacts with a subsetpf, ps, . . . s Pgy= (|re(0)))- BY the definition
of concurrent zero knowledge, there is a simulator macRipesuch thatSy « produces verifier views
that are indistinguishable by any distinguisher (with any auxiliary input) from views during possible
interactions ofi’* with up to gy« (|z|) instances of? on common inputz|. The proof thatP x V7 is
relation hiding now proceeds exactly as in Theorem 1.

For the “only if” direction, we want to show that for every verifier proto&6i, there is an EPPT
algorithm Sy« such that for any PPT distinguish®rwith any auxiliary input, there exists a negligible
functione such thatvz € L,Vs € Rr(x),t,z € {0,1}*,

[Pro[{D(Sy-(x,1), 2) = 1}] = Pry[{ D(View,[(P(s) < V(1)) (2)], 2) = 1}]] < e(|z]).

This proof proceeds exactly as in Theorem 1, so we omit further detailsthere.

15

A.3 Proofs of Knowledge

Theorem 3: The interactive proof syste®, V') is a proof of knowledge knowledge iff the system
PPP x V is witness convincing fof..

Proof. For the “if” direction of the proof, suppose th@P, V') is an interactive proof system fdr that

is a proof of knowledge. It is sufficient to show that the systeimx V' is witness convincing foF. for
every prover protocaP*. By the definition of proofs of knowledge, for every prover protoPd| there

is a negligible functiorep+ and a probabilistic Turing machinEp« that takes as input the common
input z and prover’s auxiliary informatior, runs in expected time polynomial j|, and outputs a
candidate witness far such that for alk, s, ¢ € {0, 1}*,

Pry [{ Accepts, [(P*(s) < V(1)) (@)]}] = Pru[{Ep- (2, 5)) € Ry(0)}] < ep=(

Thus,

Pry[{Accepts,[(P*(s) < V() (@)]}] — Prol{(s, t,z, Ep«(x,s)) € R{ }] < ep-(|z]), (1)

where the first probability’r;; is taken over the random choices made by the prover and verifier proto-
cols, while the second is taken over the random choicdsref

DefineM : 7TM — EPPT ande : T MxN — |0, 1] by takingM(P*) = Ep- ande(P*,-) = ep=.
Suppose that there exists sotng A < 1 and some run suchtha{P*x{V'},r,0) = pr;‘(Oaccepts).
Recall thatPr p-,y) can be identified with the uniform distributidhry, over triples of random
strings. SAPry [{ Accepts,[(P*(rp(0)) < V(ry(0)))(rc(0))]}] > A. By (1), we have

Pry [{(rp(0),70(0),7¢(0), Ep« (re(0),15(0))) € RE}] = A — e(P", [rc(0)]).

Moreover, we havéP*x V,r,0) = K,(pr)~“(at time 0 M, z)), and sq P*x V,r,0) = Gg/LOA—eR.
This completes the “if” direction of the proof.

For the “only if” direction, let(P, V') be an interactive proof system fdr such that the system
PPP x V' is witness convincing for.. Thus, there exist functionM : 7TM — EPPT ande :
TM x N — [0,1] such that for every PPP* € PPP, ¢(P*,-) is a negligible function, and for every
0< A<,

PPP x V k= at time 0 pri,‘((}accepts) = G;}/I’O’A%Rz. (2)

Let Ep- = M(P*) for every P* € PPP. Given a prover protocoP*, defineAp- so that for

all z,s,t € {0,1}*, Pry[{Accepts,[(P*(s) < V(1))(z)]}] = Ap-(x,s,1). Since the probability
distribution Prpep vy ONPPP x {V }(r) can be identified witfPry,, it follows that

(PPP x {V},r0) E pri‘((}accepts)
forallr € P* x V. By (2), forallr € P* x V, we have
(PPP x {V},r0) E Gg/l’o’)‘_eRz;
that is, (PPP x V,7,0) = Kp(pry~“(at time 0 M, pt))- We can view(s, t, =, M(P*)(z, 5)) € R}

as a random variable (the probability that it is 1 is just the probabilityXi&P*)(x, s) returns ay such

16

that(z,y) € Ry, taken over the random choicesMdf(P*). SinceM(P*) = Ep+, we have that, for all
x,s,t €{0,1}*,
Pry[{(s,t,x, M(P*)(z,s)) € Rf}] > Ap+(x, 5,t) — e(P*, |z]).
That is,
Pry[{Accepts,[(P"(s) < V(1)) (x)]}] — Pru[{Ep-(z,5)) € Rp(2)}] < e(P", |z])
forall z,s,t € {0, 1}*. It follows that(P, V') is a proof of knowledges

Acknowledgements

The first and third authors are supported in part by NSF grants ITR-0325453, 11S-0534064, and IIS-
0812045, and by AFOSR grants FA9550-08-1-0438 and FA9550-05-1-0055. The second author is
supported in part by NSF CAREER Award CCF-0746990, AFOSR Award FA9550-08-1-0197, BSF
Grant 2006317 and I3P grant 2006CS-001-0000001-02.

References

Bellare, M. and O. Goldreich (1992). A modular approach to the design and analysis of authentication
and key exchange protocols.Rioc. CRYPTO '92pp. 390-420.

Dwork, C., M. Naor, and A. Sahai (1998). Concurrent zero-knowledgBrda. 30th ACM Sympo-
sium on Theory of Computingp. 409-418.

Fagin, R., J. Y. Halpern, Y. Moses, and M. Y. Vardi (1998¢asoning About Knowledgéambridge,
Mass.: MIT Press. A slightly revised paperback version was published in 2003.

Feige, U., A. Fiat, and A. Shamir (1987). Zero knowledge proofs of identityerbt. 19th ACM
Symposium on Theory of Computipg. 210-217.

Feige, U. and A. Shamir (1990). Witness indistinguishability and witness hiding protocols. In
Proc. 31st IEEE Symposium on Foundations of Computer Scippcd16-426.

Goldreich, O. (2001)Foundations of Cryptography, Vol. Cambridge University Press.

Goldwasser, S., S. Micali, and C. Rackoff (1989). The knowledge complexity of interactive proof
systemsSIAM Journal on Computing 18), 186—208.

Halpern, J. Y., Y. Moses, and M. R. Tuttle (1988). A knowledge-based analysis of zero knowledge.
In Proc. 20th ACM Symposium on Theory of Compuytppg 132-147.

Halpern, J. Y. and M. R. Tuttle (1993). Knowledge, probability, and adversal@snal of the
ACM 4Q4), 917-962.

Moses, Y. (1988). Resource-bounded knowledg@rbt. Second Conference on Theoretical Aspects
of Reasoning about Knowledgsp. 261-276.

Rantala, V. (1982). Impossible worlds semantics and logical omnisci&uta.Philosophica Fen-
nica 35 18-24.

Tompa, M. and H. Woll (1987). Random self-reducibility and zero knowledge interactive proofs of
possession of information. Iroc. 28th IEEE Symposium on Foundations of Computer Science

17

